jQuery Project Review

Background
jQuery project was required to upgrade the deprecated jQuery function in our configuration to use the new function in jQuery 3 as SITS 9.7.0 is moving to jQuery 3.

In total, the jQuery project has done 4 releases and deployed 290 pieces of SITS configuration and 66 scripts into LIVE over three deployments with the bulk of these containing multiple updates. There were 1123 individual changes rolled out in the project’s final deployment and around 600 changes deployed in the earlier iterations.

The 4th release of jQuery upgrade project has deployed into the production environment on 24th January which results five issues affecting several business areas within Euclid.
It was not a good timing because these issues combined with other service issues around same time have made users feel less confident with the services.

The priority was for the project team to work with the operation and the application management to investigate the cause of issue and worked the resolution according the priority how the user and the business were affected. The most urgent issues were fixed within few working days, but less priorities issues were taking longer to fix, and all issues related to jQuery release were resolved within 10 days.

As the release has caused major impact on the service and the business process, we have carried out a review within the team which focused on the following areas
· What issues were caused by this jQuery release
· What went wrong in our testing and sign off process which failed to prevent these issues
· What lesson we have learned from the previous release and did we apply the lesson learned for this release
· What lessons we need learn from this and what action we need take to prevent similar problem in the future

Key recommendations
Based on the outcome of review which were focusing on the high level of our processes, we have made the following recommendations:

What we can do now:
· Strictly following our agile methodology to ensure we are using the agile principles through all projects: the planning, business analyses, development, testing and deployment
· Adopt DevOps principle to integrate the development and operation support closer together
· Aim to have quick/small and more regular release lifecycle.
· Operation to sign off the changes before deployment
· Plan the projects and the releases together with the key business processes in Operation
· Work together to fix any post deployment issue quickly
· Manage backlog of testing better to avoid long delay between development, testing and deployment.
· Raise alert when things piled up so that we can plan the resource/deployment accordingly
· [bookmark: _Hlk5635402]Senior BA or senior Developer can take the project management task for small piece of work with little risk. For a large/complex project, it is recommended to appoint a proper project manager to manage the project, review risks, assess options and escalate issues. This will allow the project manager to drive the project forward and to take pressure off from BA or Developer.
· Recognize the complexity and old stuff/technical debt in Euclid and planning development/testing to manage the risk

Long term changes:
· Create a pre-production environment which will be refreshed daily for pre-deployment check and testing
· Maintain the principle to have maximum 5 projects running in the same time
· Push more automated deployment to speed up the deployment and also reduce the human errors and minimize the dependencies between projects.
· Change the project centric release to the service release
· Automated regression testing
· Fully automated release management

Detailed review of issues reported
The following issues were raised by the users after the deployment of 4th release of jQuery upgrade which is related to the jQuery upgrade
· Issue 1: Some business processes are not working due to JavaScript not refreshed in client’s browser caching
Cause: our implementation has included a process to force client browser to refresh JavaScript. It has worked in majority of our deployment and also in previous jQuery release, thus we did not foresee this issue. (Note: this is not necessary caused by the jQuery upgrade itself, but due to the large number of JavaScript files, this was affecting wide areas of business and more users were impacted)
Action:
· We have reviewed and improved our current process to force browser to refresh JavaScript. However, there is still limitation with the new improved process. We will apply the new process to the future deployment.
· We will review all JavaScript files in the deployment. If there is a risk of browser caching issues, the communication to user will be included as part of deployment.
· Issue 2: Admission Back button was not visible to all users.
Cause: The role group controlling the access were different between the production and other environment.
Action: Additional check/test comparing LIVE and non-production environment.
· Tier four engagement events: Contact point recording was unavailable to users trying to access the service.
Cause: there are dependency of deployment for Tier engagement and the jQuery upgrade. The both deployments were holding in TEST/TRN for a while, and some of configuration of Tier four were missed for the LIVE deployment.
· Attendance recording: Users were unable to add a new student to the register and marking student attendance status was showing a progress animation to confirm processing which did not complete.
Cause: A jQuery update had been applied incorrectly which had prevented a function from running, this function was responsible for hiding the animations and showing the newly added student.
· UG admissions bulk decisions: User were unable to use the functionality within the build processing modal.
Cause: this issue was an incorrectly applied jquery update which prevented the set of functions supporting the bulk operations modal being run at the point of page load.
· Post graduate application form: Form becomes unresponsive after completing the first section.
Cause: This issue was cause by an incorrectly applied jQuery function which caused a crash when transitioning between form tabs.
The following issues were raised to the project team, but further investigation confirmed that they are not related to jQuery upgrade:
· Users are unable to save events in internet explorer due to date field validation preventing form submission. (Existing issue due IE handles the date validation differently from other browsers)
· Single sign on links emailed to academics not allowing access (Due to Euclid performance problem, time out)
· Post graduate annual review: Some users were unable to access the PGR system. (Due to Euclid performance problem, time out)

Review of overall jQuery upgrade project

The initial review was focusing on the issues raised after the deployment and the priority was resolving these issues as quickly as possible to minimize the impact on the business processes.

The team has also reviewed the wide picture of the jQuery projects and the decisions we have made which have contributed to the problems of release.

Approach of jQuery upgrade
The project was seen at the beginning as a pure technical project and Greg has asked to act as the project manager and the technical lead. As the main changes were seen as technical update, we have decided to use the bottom up approach for the upgrade which is to review our configurations to identify the deprecated jQuery functions used and replace them with the functions from jQuery 3.

While this approach has enabled us to create a list of changes required very quickly with the help of our configuration repository, it was difficult to have a full picture which links the business process with each change.

Because of this, it has created a big challenge for testing to verify a business process after the replacement, particular there are some cases when the new function for a deprecated function are working slightly differently from the old function. This has caused the big testing effort to verify these changes and also forced a long delay for the deployment. Also, because the changes have touched the wide areas of code base, it has created many dependencies with other ongoing projects.

In hindsight, it might be better to use top down approach where we can start with the key business process and work through the codes/configurations using the deprecated functions and replace them and test the changes by business process according to the priorities.

Challenges/difficulties and things we were failing short of our standard/process
· Underestimated the challenge and the effort required for the upgrade and for the testing
· Codes from 2005 onwards with various format and different styles of development
· Use the technical lead as the project manager
· Lack of project management experience
· Lack of time for the project management due to other demands
· Resourcing and prioritization
· No BA resource available to help the analyses the impact of changes
· Lack of senior development resource to oversee the changes and the decision of release
· Resource was conflict and often high priority project takes the resource away
· Agile methodology
· There is no proper agile project team working together as most time, only developers working on the changes
· Tester only available later to the project
· The regular release was not possible which cause a large release required, ahead of the SITS 9.6.0/9.7.0 upgrade
· Dependency with other projects making it harder to do regular release for every two weeks
· Testing
· There are discrepancies between non-production environments and the production environment. Some issues were only found in LIVE but not in TEST
· No tester resources during the project development phases
· Bottom up approaches is not helpful to identify the areas/business process to test
· Manual testing are hard and labor intensives
· Long release period to push more changes together and make the testing to challenge, no easy way to re-testing
· Too much work was done in our shared development environment at once and the release are based on projects rather than overall Euclid service
· There is no clean separation of our codes due to SITS platform, this made all changes dependent on each other and our releases even bigger.
· The dependencies are making testing more challenge and also difficult to create clean deployment with the right dependency order.
· Communication of progresses are getting challenges/difficult due to people busy on other high priority projects/supports

Lesson learned from the developers
· Lesson: If you want a project to be managed then you need to hire someone who has that skillset and experience to be a proper project manager.
· Lesson: A project manager shouldn’t be so burdened with process that they have no time to keep on top of team activity.
· Lesson: A project should not be started until resourcing and planning can guarantee the flow of work through the project.
· Lesson: If project flow is disrupted then the project should be paused until the blockage is cleared.
· Lesson: A project should always have one G7 developer assigned to it
· Lesson: Everyone needs ramp-up time before they know enough to make a good decision, especially if the system is high in complexity.
· Lesson: We need to provide greater visibility of changes being made around the team, giving opportunities for other team members to see what’s happening and contribute.
· Lesson: We need proper version control of our external files, and our configuration. We need merge requests where we can easily review those changes, and thus can be passed around the team more easily.
· Lesson: We need to achieve the goal of having a solid service-wide regression test pack, consisting of automated unit tests, automated e2e tests, automated integration tests and manual acceptance tests
· Lesson: We need headroom to regularly maintain the codebase, especially for a service as large as EUCLID. To do otherwise leaves projects at increased risk, and leaves people with no way to link code to functionality.

[bookmark: _GoBack]
4

