
	SCE014: Future Development Recommendations
	 Version: 1.0

[bookmark: _GoBack]

Future development recommendations

for

College Project Marking Tool

SCE014

Version: 1.0

Date: 19/07/19

	[image: 1Line2ColSpot_CS3]
	

Contents
1	Document Management	2
1.1	Contributors	2
1.2	Version Control	2
2	Introduction	3
3	Platform selection	3
3.1	IS Applications platform standards	4
4	API First system architecture	4
5	Development team	5
6	Project methodology	5
7	Requirements gathering and prioritisation	5
8	Representation of stakeholders	5
9	Tools and techniques to assist collaboration	6
10	Successes and learning points from SCE014	6
10.1	Good project team composition	6
10.2	Strong core team members	6
10.3	Woolly definition of requirements	7
10.4	Unclear ownership of requirements	7
10.5	Occasional difficulty in decision making	7

[bookmark: _Toc14424278]Document Management
[bookmark: _Toc89073559][bookmark: _Toc14424279]Contributors
Please provide details of all contributors to this document.
	Role
	Unit
	Name

	IS Senior Developer
	IS Apps: Development Services
	John Allison

	Application Developer
	School of Physics and Astronomy
	Keith Brunton

	Project Sponsor
	USD: Director’s Office
	Victoria Dishon

	Project Manager
	IS Apps: Project Services
	Ken Miller

[bookmark: _Toc14424280]Version Control
Please document all changes made to this document since initial distribution.
	Date
	Version
	Author
	Section
	Amendment

	26/04/19
	1.0a
	JA
	All
	Initial version

	19/07/19
	1.0
	JA
	All
	First draft of full document

[bookmark: _Toc14424281]Introduction
The aim of project SCE014 College Project Marking Tool is to update the Marking Tool developed and run by the School of Physics and Astronomy to allow it to be rolled out for use by other schools within the CSCE.

IS Applications are involved in a supporting role: to run the project and to provide consultancy to assist the college developers to apply best practice when rolling out the application.

Now that the development work is nearing closure, the purpose of this document is to provide the CSCE with recommendations on how to progress any similar future developments, with or without IS Applications input.

[bookmark: _Toc14424282]Platform selection
In this context Platform means the following:
· The server-side programming language used, e.g.: Java, Python, Ruby, PHP, etc.
· Any web application framework used, e.g.: Ruby on Rails, Django, Drupal, etc.
· Any core dependencies of the application, such as a database.

When selecting a platform, firstly suitability of purpose should be considered.

Then the following factors should be considered, listed here broadly in order of importance:

1. Developer familiarity.
Choosing a platform in which your project team has existing expertise will result in quicker build times and better quality software, when compared to using a platform which your team has to learn for the first time.

2. Consistency with existing estate.
Using the same platform as other applications mean that you can have common components between them. This can be things like hosting provision, build and deployment pipelines, testing procedures, documentation, and application architectures.

3. Community within UoE.
Is the candidate platform used elsewhere within the School, College, or wider University? Is it used by IS? Collaboration and application roll-out is made easier if the platform is widely adopted.

4. Community outside of UoE.
Having a large community for a platform in Edinburgh and in Scotland means it is easier to recruit developers when required.
Having an active global community usually means that platform will be subject to more frequent updates, will have a longer lifetime, will have a richer package/plugin ecosystem and will have good documentation/help available.
[bookmark: _Toc14424283]IS Applications platform standards
At time of writing, the standard platforms used for new development by IS Applications are as follows:
· Web applications
Currently: Python (3.6) and Django (2.2) with MySQL/MariaDB database. React and Vue JS frontends have also been used here and there and is likely their adoption will increase in the near to medium term.
Historically: ColdFusion. We do not carry out any new developments in ColdFusion and recommend against its adoption.

· APIs
Currently: Python/Django, with Django Rest Framework (latest version)
Historically: Java Spring Boot

· ETL/Integrations
Currently: Talend. This is a proprietary tool which can create integrations between systems.
Historically: PL/SQL packages, bash and SQL scripts, cron.
In addition to this, we use other platforms for some of our larger services:
· MyEd
uPortal, Java, React, XML, Oracle

· EdWeb/University Website
PHP, Drupal, MySQL/MariaDB

Across many of our applications, we also make use of EdGEL. This Global Experience Language is a “set of best practice guidelines, explicit style guides and tools that describe design principles to support the University brand”.

[bookmark: _Toc14424284]API First system architecture
API First is a modern system architecture which creates a clear separation between:
· the backend (API) implementation: data model and business logic
· the frontend (client) implementation: UIs, workflows, and reporting features

Creating an API to drive your application in this way allows you to define the data it makes available, the functions which can be performed on it, and the rules which surround these.
This is of great benefit to collaboration because the API specification can be shared and multiple teams can develop clients and/or integrations in parallel which consume/interact with your data, while you remain in control of the rules to which they must conform.

[bookmark: _Toc14424285]Development team
Ideally a project will have two or more developers. Collaborating when creating software compared to solo development will produce better quality software, at the expense of some extra time required.
Additionally, it will promote learning within your team, as well as naturally lead to wider understanding of the software.
In small project where two “full time” developers is not feasible, it is desirable to at least bring in a second developer to perform code reviews of the other’s work. The effort required by the reviewing developer will be around one fifth of that carried out by the lead developer.

[bookmark: _Toc14424286]Project methodology
Waterfall and Agile should both be considered as viable methodologies.

Waterfall should be considered when:
· Requirements can be captured in their entirety ahead of development, and are clear and well-defined
· Project size is small to medium
· You are confident that not much rework will be required in UAT phase
· Your project team has limited or no experience of Agile methodology
· All of your requirements are must-haves.

Agile should be considered when:
· Requirements are more complex and difficult to capture in entirety ahead of project start
· You have a wide range of stakeholders with a range of requirements, possibly with conflicting interests in some areas
· Project size is medium to large
· You have a large number of requirements, with a range of different priorities (Must/should/could have)

[bookmark: _Toc14424287]Requirements gathering and prioritisation
When gathering requirements from a wide group of stakeholders, it can be useful to hold an agile-style user story workshop.
Care should be taken to restrict the scope to prevent a very large number of stories being gathered. Anything higher than approx. 100 user stories following deduplication can cause delays as the team attempts to manage them.
If the scope of your project is large or spans multiple business areas, you may wish to consider holding separate workshops to focus on each area independently.

[bookmark: _Toc14424288]Representation of stakeholders
When a project has a wide range of stakeholders, perhaps across multiple schools, it is important to get the right representatives to join the project team.
Ideally you want people who:
· Are involved with the relevant business area/business process as part of their role
· Are not too busy to contribute, i.e.: must have enough time available in their working week for project work
· Are able to make decisions on behalf of their business area, and/or are able to canvass opinion and talk to those who are
· Are good communicators – they will be responsible for feeding information back to their teams.

[bookmark: _Toc14424289]Tools and techniques to assist collaboration
When building software with wider collaboration in mind, tools which enable transparency in processes and help promote collaboration are very useful.
Version control
Git is the de facto standard and is particularly well suited to distributed collaboration.
Hosting the application code in a repository such as GitHub or GitLab with correctly configured permissions will enable collaborators to access the code and contribute.
To manage the branching and release strategy, git flow should be used.
Documentation
Developer-focused documentation is critical and must be included in the application’s README. As a minimum, full instructions on how to build and run the application should be included, as well as the release history. Good example templates for the README can be found online.
Issue tracking
An issue tracking system should be used to manage defects/problems. IS run a JIRA service which can be used.
For agile projects, JIRA can be used to define the user stories, manage the backlog and manage releases.
Testing
IS provide a test case management service which can be used to help manage your user acceptance testing. See here for more information.

[bookmark: _Toc14424290]Successes and learning points from SCE014
[bookmark: _Toc14424291]Good project team composition
The size of the team worked – the key roles (teaching admin, course organisers, and markers) were well represented, although not across all schools, but this didn’t really matter. Some people had more than one role.
School representatives were able to start conversations within their schools to make changes where necessary.
[bookmark: _Toc14424292]Strong core team members
The project manager and lead developer were extremely motivated and proactive in driving the project forward.
The lead developer came into the project already having an in-depth knowledge of the existing tool and business area.
[bookmark: _Toc14424293]Woolly definition of requirements
Requirements should have been more clearly defined to avoid ambiguity - people interpreted them in different ways. This would have helped to set expectations.
Checking that requirements are fully defined should be done at the start of iteration meeting for all user stories to be included in the iteration. Adding full Conditions of Satisfaction to user stories is a good way to achieve this.
[bookmark: _Toc14424294]Unclear ownership of requirements
For user stories, names should have been put on them instead of departments. This would ensure that ownership of a story is clearer. Sometimes when discussing a story, no-one really seemed to have ownership. (User stories with no ownership should be discarded!)
[bookmark: _Toc14424295]Occasional difficulty in decision making
Due to the large committee-like team it was often difficult to reach a decision on an issue. Sometimes there will not be a solution which makes everyone happy. However, it is important that a decision is made, and that the project team unites and stands behind it.
One strategy to deal with this is to use consultative individual decisions. When a divisive issue comes up, the first decision to be taken is which team member will deal with it. This person then talks with the relevant stakeholders, gathers their opinions, weighs the pros and cons and finally comes to a decision. At this point the rest of the project team must stand behind the decision.

Page 7 of 7

image1.emf

image2.jpeg
- THE UNIVERSITY of EDINBURGH

